
QuantumGL

Wolfgang Thaller

3rd April 2004

Abstract

QuantumGL is an OpenGL-based tool for the visualization of volume
data. In a text file, you define the data to be visualized and the visu-
alization methods to be used. You can define an arbitrary number of
real-valued parameters which can then be modified interactively from the
graphical user interface.

Contents

I Visualization Task Files 3

1 Lexical Syntax 3
1.1 Whitespace and Statements . 3
1.2 Comments . 3
1.3 Identifiers . 3
1.4 Floating-Point Constants . 4

2 Variables 4
2.1 Predefined Variables . 4

3 Expressions 5
3.1 Expression Attributes . 5

3.1.1 Type . 5
3.1.2 Default Resolution . 5
3.1.3 Range . 6

3.2 Implicit type conversions . 6
3.3 Values . 6

3.3.1 Literal Constants . 6
3.3.2 Imaginary Unit . 6
3.3.3 Variable References . 6
3.3.4 Field References . 6
3.3.5 Field Minimum and Maximun 7

3.4 Operators . 7
3.4.1 cut_to . 7

1

3.4.2 scaled_to . 7
3.4.3 Vector Composition . 8
3.4.4 Unary Minus (-) . 8
3.4.5 Arithmetic Operators . 8

3.5 Functions . 8
3.5.1 read . 8
3.5.2 abs . 8
3.5.3 Standard Unary Functions 8
3.5.4 Self-Made Functions . 9

4 Setting Options 9
4.1 nobox . 9
4.2 colorbox . 9
4.3 grid . 9
4.4 background . 9
4.5 fog . 9
4.6 resolution . 10
4.7 world_size . 10

5 Field Declarations 10

6 Animations 10

7 Visualization Objects 11
7.1 Isosurfaces . 11

7.1.1 Cyclic . 12
7.1.2 Cutout . 12

7.2 Slices . 12
7.3 Vectors . 12

7.3.1 Point Lists . 12
7.4 Flow Lines . 13

7.4.1 Point Lists . 13
7.4.2 Step Size . 13

II Data Files 13

8 ASCII Data Files 14

9 Binary Data Files 14

III Extending QuantumGL 14

2

10 Predefined Types 15
10.1 Operations on Scalar Values . 16
10.2 Operations on Vectors . 17
10.3 Operations on Fields . 17

11 How to add a Field Function 17
11.1 The Header File . 17
11.2 The Source File . 18
11.3 The Field Function Registry . 18

Part I

Visualization Task Files
A Visualization Task File is a plain text file with the extension .qgl1. It consists
of a list of statements which are processed linearly when the file is opened in
the QuantumGL application.

1 Lexical Syntax

1.1 Whitespace and Statements
Whitespace (spaces, tabs and newlines) is not significant, except where it is re-
quired as a separator. Every statement is terminated by a semicolon — multiple
statements may be put on one line, and a statement may span multiple lines.

1.2 Comments
Line comments start whenever the hash character (#) or two slash characters
(//) are encountered and last until the end of the line.

C-style block comments start with the sequence /* and last until the se-
quence */ is encountered. They can not be nested.

You can also use (* and *) to comment out a block of code. Other than the
C-style block comments above, you can nest this style of comments.

1.3 Identifiers
Identifiers consist of one or more letters, numbers or underscores (_). The first
character of an identifier must not be a number. Identifiers are case sensitive.

All reserved keywords used by QuantumGL are in lowercase. Future versions
of QuantumGL may have more reserved keywords, so in order to make sure that
your Visualization Task File can be used unchanged with future versions, use
at least one uppercase character in your identifiers.

1Pronounced “coogle”, like the German word “Kugel” (sphere)

3

1.4 Floating-Point Constants
Examples for floating-point constants:

42
3.141592654
0.5
-.5
3e17
-1.5e-6
.3e+2

Also, the constants π and 2π can be written as follows:

pi
2pi

2 Variables
Variables in QuantumGL have a real value. The QuantumGL application can
show a list of all defined variables and allows to change their values. When
a variable is changed, all objects that depend on that value are automatically
re-calculated.

A variable is declared as follows:

variable identifier := constant ;

Please note that the right-hand value has to be a constant, i.e. the value cannot
depend on another variable.

When you declare a variable, you can also specify a minimum and maximum
value in square brackets:

variable identifier [constant,constant] := constant ;

2.1 Predefined Variables
QuantumGL predifines some variables for global camera and lighting paramet-
ers. You can change the initial value of these variables as follows:

identifier := constant ;

The following variables are predefined in the current version of QuantumGL:

latitude The latitude angle of the camera, in degrees (−90◦ < latitude < 90◦)

longitude The longitude angle of the camera.

distance The distance of the camera from the center of the cube.

4

fovy The field-of-view angle for the camera.

lightLatitude The latitude angle of the light source.

lightLongitude The longitude angle of the light source.

ambient The ambient lighting level.

lineWidth The width of the lines used for the bounding box and for flow
objects (in pixels).

3 Expressions
There are two kinds of expressions in QuantumGL: field expressions and vec-
tor expressions. Scalar values are considered to be one-dimensional vectors in
QuantumGL.

A vector may have between one and ten components2. The components
of the vector may be either real or complex.

A field is a function that maps from R3 to a vector type.

3.1 Expression Attributes
Each expression and subexpression has a set of attributes which are determined
only by the expression and its subexpressions, not by its context. The first
and most important of these attributes is the type of the expression, which has
already been mentioned above.

3.1.1 Type

Let K be either R or C and n a positive integer. A vector expression has a type
of Kn and a field expression has the type R3 7→ Kn.

3.1.2 Default Resolution

This attribute applies to field expressions only. The default resolution specifies
at how many points the field should be sampled when it is evaluated. You can
specify a different resolution in every statement that evaluates a field.

By default, this is initialized to a global default value (see section 4.6 on
page 10). For references to fields defined using a field statement (see sec-
tion 5 on page 10), the default resolution is the resolution the field was evalu-
ated at. For fields loaded from a file using the read function, it is the resolution
stored in the file.

For compound expressions, the default resolution is determined from the
resolutions of the subexpressions.

2This limit can be increased by modifying the maxDimensions constant in the source file
“CommonEvaluator.h” and recomiling QuantumGL.

5

3.1.3 Range

This attribute applies to field expressions only. This attribute specifies the range
of coordinates that the field should be evaluated at. It is either an interval in
R3, or undefined. Fields with undefined range cannot be evaluated. You can
change this attribute using the scaled_to and cut_to operators.

For compound expressions, the ranges of all subexpressions whose range is
defined have to match. This range is also the range of the compound expression.
If all subexpressions have undefined range, the range of the compound expression
is undefined, too.

3.2 Implicit type conversions
When you use a vector expression where a field expression is required, the vector
is automatically converted to a constant field. You cannot use a field expression
where a vector expression is required. Likewise, real vectors or real vector fields
are automatically promoted to complex vectors or complex vector fields where
needed, but there is no implicit conversion in the opposite direction.

3.3 Values
3.3.1 Literal Constants

See section 1.4 on page 4 for the lexical syntax of floating point constants.
Constant expressions have the type R1.

A negative sign is not considered part of the constant. Rather, it is an
application of the unary minus operator (see 3.4.4).

3.3.2 Imaginary Unit

The constant i is defined to be the imaginary unit constant. It’s type is C1.

3.3.3 Variable References

You can refer to variables (section 2 on page 4) by their name. As variables
have real values, the type of a variable reference expression is R1. The statement
containing the expression will automatically be recalculated when the value of
the variable is changed interactively.

3.3.4 Field References

You can refer to fields (section 5 on page 10) by their name. The resulting type
is, of course, that of the defined field, and it’s default resolution and range are
the resolution and range used to evaluate the field in the field statement. If
a value between the evaluated data points of the defined field is required, it is
interpolated using trilinear interpolation. Outside of the range of the field, its
value is considered to be 0.

6

3.3.5 Field Minimum and Maximun

field_name.min
field_name.max

You can access the minimum and maximum values of a real scalar field by
adding .min or .max to the field name, respectively. You can only do that for
fields that you have declared with a field statement, not to more complex field
expressions.

3.4 Operators
3.4.1 cut_to

field_expression cut_to <[x_min,x_max],[y_min,y_max],
[z_min,z_max]>

field_expression cut_to <x_diameter,y_diameter,z_diameter >
field_expression cut_to [min,max]
field_expression cut_to diameter

The result is the same as field_expression with its range reduced to the
specified range. If the field_expression already has a range, the specified
range must fit inside it.

The range may be specified in several different ways. You may specify the
minimum and maximum values separately for each dimension. You may also
just specify one [min ,max] pair for all three dimensions. Instead of a pair, you
may also specify just a single value as the diameter of the interval. This is taken
to mean [-diameter/2,diameter/2].

Note that all the values on the right-hand side of the cut_to operator must
be constants, not expressions.

3.4.2 scaled_to

field_expression scaled_to <[x_min,x_max],[y_min,y_max],
[z_min,z_max]>

field_expression scaled_to <x_diameter,y_diameter,z_diameter >
field_expression scaled_to [min,max]
field_expression scaled_to diameter

The field_expression , which must already have a defined range, is translated
and scaled. The old range of coordinates is mapped to the specified range. The
range of the result is equal to the specified range.

The range is specified in the same way as with cut_to (section 3.4.1). As
with cut_to, all the values on the right-hand side of the scaled_to operator
must be constants.

7

3.4.3 Vector Composition

You can compose a vector from scalar values by enclosing the components in
angle brackets, separated by commas:

<component1, component2, · · ·, componentN >

All of the components must be scalar expressions. The resulting vector is com-
plex if at least one of the components is complex, and real otherwise.

3.4.4 Unary Minus (-)

You can prefix any expression (both vectors and fields) with a minus sign to
negate it.

3.4.5 Arithmetic Operators

Arithmetic operators in QuantumGL may be applied to both fields and vectors.
The result is a vector if both arguments are vectors. Otherwise, the result is a
field. If both arguments are real, the result is real, otherwise, it is complex.

The following table shows the available arithmetic operators and the allowed
combinations of vector and scalar types (let K be either R or C, and let n be a
positive integer ≥ 2):

operation operator K ◦K K ◦Kn Kn ◦K Kn ◦Kn

Addition + K no no Kn

Subtraction - K no no Kn

Multiplication * K Kn Kn no
Division / K no Kn no

Scalar Product . K no no K

3.5 Functions
3.5.1 read

read("filename ")

The read function will read a field from the specified file; the file format is
specified in Part II, “Data Files”. The data points from the file are spaced in the
unit cube (the range of the resulting field is <[-1,1],[-1,1],[-1,1]>), and
the values are interpolated if necessary. The fields default resolution and type
correspond to the resolution and type specified in the data file.

3.5.2 abs

3.5.3 Standard Unary Functions

exp, sin, cos, tan, log, log10, sqrt, asin, acos, atan, sinh, cosh, tanh

8

3.5.4 Self-Made Functions

4 Setting Options

4.1 nobox
By default, QuantumGL draws a wireframe bounding box around the visualized
data. If a statement of the form

nobox;

is present in the .qgl file, the bounding box is not drawn.

4.2 colorbox
colorbox;
colorbox <r,g,b>;
colorbox <rx,gx,bx>, <ry,gy,by>, <rz,gz,bz>;

If you use a colorbox statement, the bounding box will be drawn in color. If
you specify three RGB colors, the first parameter will be used for the edges
along the x-axis, the second for the y-axis and the third for the z-axis. If you
specify just one color, that will be used for all edges.

Using colorbox without parameters is equivalent to:

colorbox <1,0,0>, <0,1,0>, <0,0,1>;

This means that the edges along the x-axis will be drawn in red, those along
the y-axis will be drawn in green, and those parallel to the z-axis in blue.

4.3 grid
grid n ;

Draws a grid with n subdivisions on the faces of the bounding box.

4.4 background
You can set the background color using a background statement

background <red,green,blue >;

... where red, green and blue are constant values in the range 0–1.

4.5 fog
fog [near,far];

Objects will start to fade if they are farther than near units from the camera.
At far units, they will be invisible (the same color as the background).

9

4.6 resolution
resolution res;

Fields will be evaluated at res× res× res data points by default.

4.7 world_size
world_size length ;
world_size [minimum, maximum];
world_size <xdiameter, ydiameter, zdiameter> ;
world_size <[xmin,xmax],[ymin,ymax],[zmin,zmax]>;

Defines the default size of the bounding box. If it is not specified, world_size
[-1,1] is assumed.

The world_size is automatically expanded to fit all objects you define.
Therefore, you need only specify a world_size if you wish the bounding box to
be larger than the largest of your objects, or if you want to use bounding boxes
smaller than the default size of [-1,1].

The following world_size statements are equivalent:

world_size 2;
world_size [-1,1];
world_size <2,2,2>;
world_size <[-1,1],[-1,1],[-1,1]>;

5 Field Declarations
field identifier := expression ;
field identifier resolution res := expression ;

The expression must be a field expression. The identifier must not have been
declared. When this statement is encountered in the input, the field expression
is evaluated at res × res × res datapoints, or at its default resolution (sec-
tion 3.1.2 on page 5), if no resolution is specified in the field statement.

You can later use the identifier to refer to the evaluated field (section 3.3.4 on
page 6).

6 Animations
animate variable_identifier from constant

to constant [inclusive]
[and variable_identifier from constant

to constant [inclusive]]+

in n frames
[[and variable_identifier from constant

10

to constant [inclusive]]+

in n frames]+;

In order to create an animation with QuantumGL, you first add an animate
statement to your .qgl file. Once you have done that, you can view the an-
imation in the QuantumGL application or export it to a series of image files
using the “Export Animation...” command. If there is more than one animate
statement, you will be able to choose which animation to export.

The simplest form of the animate statement refers to just one variable (that
must already have been declared using the variable statement):

animate foo from 0 to 1 in 10 frames;

This will set the variable foo to 0 for the first frame of the animation, to 0.1 for
the second and so on, up to 0.9 for the tenth frame. The final value of 1 is never
reached; use this form of the animate statement to generate an animation that
you will play back as a loop.

If you want the last frame to have exactly the final parameter value that you
specified, add inclusive to the statement:

animate foo from 0 to 1 inclusive in 11 frames;

The variable foo will be 0 for the first frame, 0.1 for the second, 0.9 for the
tenth and finally 1.0 for the eleventh.

You can also create an animation that consists of two parts:

animate foo from 0 to 1 in 10 frames
and foo from 1 to 2 inclusive in 20 frames;

In the above example, foo starts at 0, reaches 1 in the eleventh frame, and then
“slows down” so that it reaches 2 in the 30th frame.

You can also use two variables at the same time:

animate foo from 0 to 1 and bar from 1 to 0 in 10 frames;

7 Visualization Objects

7.1 Isosurfaces
isosurface field_expression

at value_expression
[cyclic constant]
[color field_expression]
[cutout <[min_x,max_x],[min_y,max_y],[min_z,max_z]>]
[transparency value_expression]
[shininess value_expression] ;

Renders a surface connecting all points where the field has the value specified
after the at keyword.

11

7.1.1 Cyclic

When you want to create an isosurface from a field whose values are periodic in
nature (angles, for example), then you have to specify the cyclic keyword and
the period (for example, 2*pi). Otherwise QuantumGL would think that the
field has crossed the threshold value, when in fact it has just “wrapped around”
at 2π and gone back to zero without going through the threshold value.

7.1.2 Cutout

You can specify a range of coordinates to be “cut out” from the isosurface (so
you can see the interior). The values min_x, max_x, min_y, etc. have to be
constants.

7.2 Slices
slice

coordinate = value_expression
[framed]
[color field_expression]
[cutout <[min_x,max_x],[min_y,max_y],[min_z,max_z]>]
[transparency value_expression]
[shininess value_expression] ;

Renders a cross-section through the data. You can specify either x, y or z as the
coordinate . If the keyword framed is present, a white frame is drawn around
the borders of the cross-section.

7.3 Vectors
vectors field_expression

[color field_expression]
[secondary_color field_expression]
[sphere_color field_expression]
[sphere_radius field_expression]
[at point_list]
[shininess value_expression];

Renders one double-cone at each point specified in the point_list. One end of
the double cone is attached at the point, the length and direction of the double
cone is given by the value of the field at that point.

7.3.1 Point Lists

Explicit List

value_expression [, value_expression]+

Each of the expressions is expected to be of type R3, a three-dimensional point.

12

Grid

grid <x,y,z>, <∆x,∆y,∆z>, <nx,ny,nz>

Rather than specifying all coordinates explicitly, you can also use the grid
keyword. The grid keyword will place nx × ny × nz points in a regular, three-
dimensional grid. One corner of the grid is specified by x, y and z; the points
are placed at ∆x, ∆y and ∆z units from each other in the x, y and z directions,
respectively.

7.4 Flow Lines
flow field_expression

[at point_list]
[color field_expression]
[length value_expression]
[stepsize expression]
[shininess value_expression];

Renders one “flow line” for each point specified in the at clause. The flow lines
start in the specified points and follow the direction of the field specified as the
first parameter until they either reach a zero of the field or they have reached
the maximum length. The maximum length can be specified using the length
keyword; if omitted, it defaults to 10.

7.4.1 Point Lists

You specify point lists for flow lines in the same way as for vectors. See Section
7.3.1 for details.

7.4.2 Step Size

QuantumGL uses the Runge-Kutta integration method. The direction vectors
from the field are normalized before they are used, therefore the magnitude of
the field is irrelevant. The default step size is 0.05; you can override it using the
stepsize keyword.

You can also specify a field as the argument of the stepsize clause in order
to achieve a variable stepsize. This might be useful if you want highly curved
flowlines in one part of the image while saving computing power in others.

Part II

Data Files
Using the predefined function read(“filename”), you can read in data generated
by other programs. QuantumGL currently supports two simple data formats,

13

one plain-text data format, and one binary data format. The plain-text format
is probably easier to generate in most situations, and it is more portable3. The
binary format is substantially faster and more compact.

8 ASCII Data Files
A QuantumGL ASCII data file consists of numbers separated by whitespace
(whitespace means spaces, tabs or linefeeds). It doesn’t matter if you put several
numbers in one line, or if you put all numbers in lines of their own, all that counts
is that there is at least one space, tab or linefeed in between.

• The first number has to be either 0 or 1. A value of 0 means that it’s a
real-valued field, a value of 1 means it’s complex.

• The second number indicates the number of components of each vector.
Use 1 for scalar fields.

• Next, there are three numbers indicating the number of data points in x,
y and z directions.

• Finally, for every data point, a vector is stored.

A complex number is stored as two consecutive real numbers. A real vector is
stored as n consecutive real numbers (real part and imaginary part). A complex
vector is stored as n consecutive complex numbers (pairs of real numbers).

9 Binary Data Files
A QuantumGL binary data file starts with a twelve-byte header structure shown
in Table 1.

After that, there’s one vector per data point. A vector consists of n consec-
utive real or complex values. A complex value consists of two consecutive real
values. A real value is stored as a big-endian 32-bit IEEE-754 floating point
value.

Part III

Extending QuantumGL
With basic knowledge of C and just a few bits of C++, you can extend Quan-
tumGL by adding your own field-valued functions. This is both faster and more
convenient than using a separate program to generate big data files.

3Binary data files can be exchanged between Intel- and PowerPC-based computers, and
with other computers that use the IEE-754 floating point format. “Exotic” platforms might
cause trouble, though.

14

Size Description Format
4 bytes magic number ASCII codes for ’B’, ’i’, ’n’, ’F”

(for Binary Format)
1 byte real/complex indicator ASCII ’C’ (0x43) for complex,

’R’ (0x52) for real
1 byte number of components per vector unsigned one-byte integer
2 bytes number of data points in x direction unsigned two-byte integer, big-endian
2 bytes number of data points in y direction unsigned two-byte integer, big-endian
2 bytes number of data points in z direction unsigned two-byte integer, big-endian

12 bytes total size

Table 1: Header for Binary Data Files

By writing a small piece of C++ code, you can define functions that can
be used in the Visualization Task File. These functions can take both fields
and real numbers as arguments. The implementation currently requires that
the fields come first, i.e. the function can take zero or more field arguments
followed by zero or more real arguments. The total number of arguments is
currently limited to seven, but this limit can be increased easily.

As an example, we will describe how to write a new color function that uses a
blue-red-gradient to visualize scaler values. We will write a function that takes
a real scalar field, a (real) minimum value and a (real) maximum value, and
returns a field of R3 vectors (which will be interpreted as RGB colors). The
function will map the minimum value (and everything below it) to blue and the
maximum value (and everything above it) to red.

The function therefore has the following type:((
R3 7→ R

)
× R× R

)
7→

(
R3 7→ R3

)
(1)

In C++, however, it is difficult to create a function of this type, because
it is difficult to dynamically create a new function (we want to return a field,
which is a function R3 7→ R3). Instead, we will create an equivalent function
that evaluates the resulting field at one point and returns just a plain vector.
The type of this new function is(

R3 ×
(
R3 7→ R

)
× R× R

)
7→ R3 (2)

If we later want to evaluate the resulting field, we just have to call the
function repeatedly, once for each point. QuantumGL does this automatically.

10 Predefined Types
QuantumGL defines a set of C++ types (available in the header file “FieldFunc-
tion.h”)

15

Real a real (floating-point) number. Use this instead of float or double4 (R).

Complex a complex number (C).

vec<Real,n> a vector with n real components5 (Rn).

vec<Complex,n > a vector with n complex components (Cn).

r1field a real-valued scalar field (R3 7→ R).

c1field a complex-valued scaler field (R3 7→ C).

rvecfield<n> a real vector field with n components (R3 7→ Rn).

cvecfield<n> a complex vector field with n components (R3 7→ Cn).

So if we write the type (2) in C++, we get the following prototype for our
function in C++:

vec<Real,3> bluered(vec<Real,3> pos,
r1field f,
Real minValue,
Real maxValue);

10.1 Operations on Scalar Values
Real and Complex in QuantumGL are just synonyms6 for float and complex<float>,
so you can use all the basic arithmetic operators and the functions defined in
the C++ standard library. Consult your favourite C++ textbook.

Do not use float or double instead of Real, because in future versions,
Real might be defined to double instead. Also, always use Complex rather than
complex<float> or complex<double>.

Instead of using a normal floating point literal like 0.5, you might want to
write Real(0.5) to avoid problems with C++’s type system7.

If you want a complex constant or if you want to build a value of type
Complex from two Real values, write Complex(x,y) where x is the real part
and y the complex part.

4currently, it is defined to be float. This might be changed in future versions of Quan-
tumGL.

5n has to be an integer constant — the dimension of a vector has to be known at compile
time

6defined using typedef
7A plain floating point literal like 0.5 is considered to be of type double. Thus, when

working with variables of type Real or float and constants of type double, C++’s implicit
type conversions are used. This can lead to error messages that are hard to understand for
C++ beginners.

16

10.2 Operations on Vectors
You can create a real vector (type vec<Real,n>) by calling the function makeVecR()
with n parameters (of type Real). Likewise, you can use makeVecC() to create
complex vectors (type vec<Complex,n>).

You can access the nth component of a vector using the [] operator, that is
v[1] is the first component of the vector v.

The basic arithmetic operators are defined (“overloaded”) for vectors:

+ Addition

- Subtraction

* Multiplication by a scalar value. Both scalar *vector and vector *scalar
are allowed.

/ Division by a scalar value.

The function vdot(a,b) calculates the inner product of a and b, and the function
abs(x) returns the absolute value of a vector.

10.3 Operations on Fields
You can access the value of a field at any point in space using parantheses:
myField(pos) is the value of the field myField at the position pos. The position
must be a value of type vec<Real,3>.

You cannot explicitly create a field yourself. You can only get them as
parameters for your function. That’s why we write our function in such a way
that we do not explicitly return a field.

11 How to add a Field Function
When you add a new Field Function, you have to modify three different files:
One source file, one header file, and the file FieldFunctionRegistry.cp.

11.1 The Header File
The header file contains a so-called prototype for our function; it just tells the
C++ compiler that a function with that name and that type is defined else-
where. Note that you can put prototypes for more than one function in the
same header file. A header file should have a file name that ends in “.h”. For
our “bluered” example, we can create a text file named “BlueRed.h”, with the
following contents:

#include "FieldFunction.h"

namespace field

17

{
vec<Real,3> bluered(vec<Real,3> pos,

r1field f,
Real minValue,
Real maxValue);

}

11.2 The Source File
Next, we need the source file, where we will put in the actual code. The source
file should have the same name as the header file, but end in “.cp”8 instead of
“.h”. The source file has to include the header file at the top. For our example,
it could look like this:

#include "BlueRed.h"

vec<Real,3> field::bluered(vec<Real,3> pos,
r1field f,
Real minValue,
Real maxValue)

{
Real t = (f(pos) - minValue) / (maxValue - minValue);
if(t < 0)

t = 0;
if(t > 1)

t = 1;
return makeVecR(t,1-t,0);

}

11.3 The Field Function Registry
To make our example Field Function “bluered” known to QuantumGL, we have
to add one line to the function RegisterFieldFunctions in the file FieldFunctionRegistry.cp:

RegisterFieldFunction("bluered",&field::bluered);

At the top of the same file, we have to add an #include statement so that the
compiler can see the prototype from our header file:

#include "BlueRed.h"

8The extension “.cp” for C++ source files is not very widely used — it’s an old Macintosh
tradition. You can also use “.cc”, “.cpp”, “.cxx”, or “.C”. Do not use “.c”, as this would mean
“plain” C, not C++.

18

	I Visualization Task Files
	Lexical Syntax
	Whitespace and Statements
	Comments
	Identifiers
	Floating-Point Constants

	Variables
	Predefined Variables

	Expressions
	Expression Attributes
	Type
	Default Resolution
	Range

	Implicit type conversions
	Values
	Literal Constants
	Imaginary Unit
	Variable References
	Field References
	Field Minimum and Maximun

	Operators
	cut_to
	scaled_to
	Vector Composition
	Unary Minus (-)
	Arithmetic Operators

	Functions
	read
	abs
	Standard Unary Functions
	Self-Made Functions

	Setting Options
	nobox
	colorbox
	grid
	background
	fog
	resolution
	world_size

	Field Declarations
	Animations
	Visualization Objects
	Isosurfaces
	Cyclic
	Cutout

	Slices
	Vectors
	Point Lists

	Flow Lines
	Point Lists
	Step Size

	II Data Files
	ASCII Data Files
	Binary Data Files

	III Extending QuantumGL
	Predefined Types
	Operations on Scalar Values
	Operations on Vectors
	Operations on Fields

	How to add a Field Function
	The Header File
	The Source File
	The Field Function Registry

