Visual Quantum Mechanics





Table of Contents (Book One): Sections and Subsections

>> Show only the chapters

  • Cover Text
  • Preface
  • 1. Visualization of Wave Functions
    • 1.1 Introduction
    • 1.2 Visualization of Complex Numbers
      • 1.2.1 The two-dimensional manifold of complex numbers
      • 1.2.2 The three-dimensional color manifold
      • 1.2.3 A color code for complex numbers
    • 1.3 Visualization of Complex-Valued Functions
      • 1.3.1 Complex-valued functions in one dimension
      • 1.3.2 Higher dimensional wave functions
    • 1.4 Special Topic: Wave Functions with an Inner Structure
  • 2. Fourier Analysis of Wave Functions
    • 2.1 Fourier Series of Complex-Valued Functions
      • 2.1.1 Basic definitions
      • 2.1.2 Fourier expansion of square-integrable functions
      • 2.1.3 The convergence of the Fourier series
    • 2.2 The Hilbert Space of Square-Integrable Functions
      • 2.2.1 Linear structure
      • 2.2.2 Norm and scalar product
      • 2.2.3 Other Hilbert spaces
      • 2.2.4 Orthogonality
      • 2.2.5 Fourier series
    • 2.3 The Fourier Transformation
      • 2.3.1 From the Fourier series to the Fourier integral
      • 2.3.2 Fourier transformation in $n$ dimensions
    • 2.4 Basic Properties of the Fourier Transform
      • 2.4.1 Riemann-Lebesgue lemma
      • 2.4.2 Fourier-Plancherel theorem
    • 2.5 Linear Operators
      • 2.5.1 Basic definitions
      • 2.5.2 Boundedness
      • 2.5.3 Special topic: Continuity
      • 2.5.4 Special topic: Extension of the Fourier transform
    • 2.6 Further Results About the Fourier Transformation
      • 2.6.1 Translation, phase shift, scaling transformation
      • 2.6.2 Derivative, multiplication
      • 2.6.3 Special topic: Generalized derivative
    • 2.7 Gaussian Functions
      • 2.7.1 The Fourier transform of a Gaussian function
      • 2.7.2 Special topic: A dense set of Gaussian functions
    • 2.8 Inequalities
      • 2.8.1 The uncertainty relation
      • 2.8.2 Special topic: Sobolev and Hardy inequalities
    • 2.9 Special Topic: Dirac Delta Distribution
  • 3. Free Particles
    • 3.1 The Free Schrödinger Equation
      • 3.1.1 Matter waves
      • 3.1.2 The Schrödinger equation
      • 3.1.3 Scaling the unit of length
      • 3.1.4 Plane waves
    • 3.2 Wave Packets
      • 3.2.1 Superpositions of plane waves
      • 3.2.2 Continuous superposition
      • 3.2.3 Fourier transformation
      • 3.2.4 Example: Gaussian amplitude function
    • 3.3 The Free Time Evolution
      • 3.3.1 Solution of the Schrödinger equation
      • 3.3.2 Example: Gaussian function
      • 3.3.3 Conservation of the norm
      • 3.3.4 The propagator
    • 3.4 The Physical Meaning of a Wave Function
      • 3.4.1 Interpretation of the wave function
      • 3.4.2 Elementary measurements
      • 3.4.3 Expectation value
      • 3.4.4 The measurement process
    • 3.5 Continuity Equation
    • 3.6 Special Topic: Asymptotic Time Evolution
    • 3.7 Schrödinger Cat States
      • 3.7.1 Superposition of two Gaussian functions
      • 3.7.2 Schrödinger's cat
    • 3.8 Special Topic: Energy Representation
  • 4. States and Observables
    • 4.1 The Hilbert Space of Wave Functions
      • 4.1.1 State vectors
      • 4.1.2 Superposition principle
    • 4.2 Observables and Linear Operators
      • 4.2.1 The position operator
      • 4.2.2 Momentum operator
      • 4.2.3 Kinetic energy
    • 4.3 Expectation value of an observable
    • 4.4 Other observables
      • 4.4.1 The substitution rule
      • 4.4.2 Functions of x
      • 4.4.3 Functions of p
      • 4.4.4 Angular momentum
    • 4.5 The commutator of x and p
    • 4.6 Electromagnetic Fields
      • 4.6.1 Electric Potentials
      • 4.6.2 Magnetic Fields
    • 4.7 Gauge Fields
      • 4.7.1 Non-uniqueness of the wave function
      • 4.7.2 Non-uniqueness of the Schrödinger equation
      • 4.7.3 Gauge transformations of magnetic fields:
      • 4.7.4 Gauge transformation of the Schrödinger equation
    • 4.8 Projection Operators
      • 4.8.1 An example
      • 4.8.2 Measurements
      • 4.8.3 The general projection postulate
    • 4.9 Transition probability
  • 5. Boundary Conditions
    • 5.1 Impenetrable Barrier
      • 5.1.1 Dirichlet Boundary Conditions
      • 5.1.2 Plane waves
      • 5.1.3 Wave packets
      • 5.1.4 Reflection of a Gaussian wave packet
    • 5.2 Other Boundary Conditions
    • 5.3 Particle in a Box
      • 5.3.1 Gaussian wave packet between two walls
      • 5.3.2 Method of mirrors
      • 5.3.3 A special set of solutions
    • 5.4 Eigenvalues and Eigenfunctions
      • 5.4.1 Eigenvectors of linear operators
      • 5.4.2 Eigenfunctions in a box
      • 5.4.3 Time dependence of eigenfunctions
      • 5.4.4 Eigenfunction expansion
    • 5.5 An Example: Unit Function in a Dirichlet Box
    • 5.6 Particle on a Circle
    • 5.7 The Double Slit Experiment
      • 5.7.1 The Experimental Setup
      • 5.7.2 Quantum Mechanical Description
      • 5.7.3 Comparing Theory with Experiment
      • 5.7.4 The Predictions of Quantum Mechanics
    • 5.8 Special Topic: Analysis of the Double Slit Experiment
      • 5.8.1 Events and Probability
      • 5.8.2 Classical Consideration
  • 6. Linear Operators in Hilbert Spaces
    • 6.1 Hamiltonian and Time Evolution
    • 6.2 Unitary Operators
    • 6.3 Unitary Time Evolution, Unitary Groups
    • 6.4 Symmetric Operators
    • 6.5 The Adjoint Operator
      • 6.5.1 Adjoint of a bounded operator
      • 6.5.2 Adjoint of a unitary operator
      • 6.5.3 Special Topic: Adjoint of an unbounded operator
    • 6.6 Self-Adjointness, Stone's Theorem
    • 6.7 Translation Group
      • 6.7.1 Translations
      • 6.7.2 Translations in momentum space
    • 6.8 Weyl Relations
    • 6.9 Canonical Commutation Relations
    • 6.10 Commutator and Uncertainty Relation
    • 6.11 Symmetries and Conservation Laws
  • 7. Harmonic Oscillator
    • 7.1 Basic Definitions and Properties
      • 7.1.1 Classical Mechanics
      • 7.1.2 Quantum Mechanics
      • 7.1.3 Scaling transformation of the Hamiltonian
      • 7.1.4 Dimensionless units
      • 7.1.5 Orders of magnitude
    • 7.2 Eigenfunction Expansion
      • 7.2.1 Eigenvalues of the Hamiltonian
      • 7.2.2 Expansion into eigenfunctions
      • 7.2.3 Comparison with Classical Motion
    • 7.3 Solution of the Initial Value Problem
      • 7.3.1 The time evolution
      • 7.3.2 Periodic time dependence
      • 7.3.3 Fourier Transform of Oscillator States
    • 7.4 Time Evolution of Observables
      • 7.4.1 Time-dependence of operators
      • 7.4.2 Position and Momentum Observables
      • 7.4.3 Time Evolution and Translation
    • 7.5 Motion of Gaussian Wave Packets
      • 7.5.1 Coherent states
      • 7.5.2 Arbitrary Gaussian function
    • 7.6 Harmonic Oscillator in Two and More Dimensions
    • 7.7 Theory of the Harmonic Oscillator
      • 7.7.1 Supersymmetry
      • 7.7.2 The Spectrum of Eigenvalues
      • 7.7.3 The Eigenvectors
    • 7.8 More about Coherent States
      • 7.8.1 Coherent states
      • 7.8.2 Completeness of Oscillator Eigenfunctions
    • 7.9 Special Topic: Mehler Kernel
  • 8. Special Systems
    • 8.1 The Free Fall in a Constant Force Field
      • 8.1.1 Classical mechanics
      • 8.1.2 The quantum time evolution
      • 8.1.3 Position and momentum operators
    • 8.2 Free Fall with Elastic Reflection at the Ground
    • 8.3 Magnetic Fields in Two Dimensions
    • 8.4 Constant Magnetic Field
      • 8.4.1 The Schrödinger equation
      • 8.4.2 The velocity operators
    • 8.5 Energy Spectrum in a Constant Magnetic Field
    • 8.6 Translational Symmetry in a Magnetic Field
      • 8.6.1 Classical motion
      • 8.6.2 Symmetry under translations
      • 8.6.3 Infinite degeneracy of eigenvalues
      • 8.6.4 Translation preserving the center of motion
    • 8.7 Time Evolution in a Constant Magnetic Field
      • 8.7.1 Time-dependence of the quantum mechanical operators
      • 8.7.2 Motion on circles
      • 8.7.3 Rotational symmetry
      • 8.7.4 Unitary time evolution
    • 8.8 Systems with Rotational Symmetry in Two Dimensions
      • 8.8.1 Rotations
      • 8.8.2 Polar coordinates
      • 8.8.3 Eigenvalue problem in polar coordinates
    • 8.9 Spherical Harmonic Oscillator
    • 8.10 Angular Momentum Eigenstates in a Magnetic Field
  • 9. One-Dimensional Scattering Theory
    • 9.1 Asymptotic Behavior
    • 9.2 Example: Potential Step
      • 9.2.1 Continuity condition
      • 9.2.2 Energies higher than the step size
      • 9.2.3 Total reflection
      • 9.2.4 Scattering from the right
    • 9.3 Wave Packets, Eigenfunction Expansion
      • 9.3.1 Energy representation in a constant potential
      • 9.3.2 Wave packets in a step potential
    • 9.4 Potential Step: Asymptotic Momentum Distribution
    • 9.5 Scattering Matrix
    • 9.6 Transition Matrix, Several Steps
    • 9.7 The Tunnel Effect
    • 9.8 Example: Potential Well
      • 9.8.1 Bound state energies
      • 9.8.2 Energy spectrum for the potential well
      • 9.8.3 The scattering matrix
    • 9.9 Parity
      • 9.9.1 The parity transformation
      • 9.9.2 Example: The rectangular well
  • Appendix A. Numerical Solution in One Dimension
    • 1.0.3 Discretization of the Schrödinger equation
    • 1.0.4 Solution of a linear equation with tridiagonal matrix
    • 1.0.5 Crank-Nicolson method for the Schrödinger equation
    • 1.0.6 Discussion
  • Appendix B. Movie Index
    • 1 Visualization
    • 2 Fourier Analysis
    • 3 Free Particles
    • 4 Boundary Conditions
    • 5 Harmonic Oscillator
    • 6 Special Systems
    • 7 Scattering Theory
  • Appendix C. Other Books on Quantum Mechanics
  • Bibliography
  • Index
  • Color Plates