Table of Contents (
Book Two
): Sections and Subsections
>> Show only the chapters
Cover Text
Preface
Contents
Chapter 1. Spherical Symmetry 1
1.1. A Note on Symmetry Transformations 2
1.1.1. Rotations as symmetry transformations 2
1.1.2. Symmetry transformations in quantum mechanics 4
1.1.3. Realizations of symmetry transformations 5
1.1.4. Invariance of a physical system 6
1.2. Rotations in Quantum Mechanics 7
1.2.1. Rotation of vectors in R
3
7
1.2.2. Rotation of wave functions 10
1.3. Angular Momentum 12
1.3.1. Angular momentum in classical mechanics 12
1.3.2. Angular momentum in quantum mechanics 12
1.3.3. Commutation relations of the angular-momentum operators 14
1.3.4. The meaning of the angular-momentum commutation relations 15
1.4. Spherical Symmetry of a Quantum System 17
1.4.1. Conservation of angular momentum 17
1.4.2. Spherically symmetric potentials 18
1.4.3. Symmetry and degeneracy 19
1.5. The Possible Eigenvalues of Angular-Momentum Operators 21
1.6. Spherical Harmonics 26
1.6.1. Spherical coordinates 26
1.6.2. Angular momentum in spherical coordinates 28
1.6.3. Special topic: Properties of the spherical harmonics 32
1.7. Particle on a Sphere 34
1.7.1. Classical particle on a sphere 34
1.7.2. The rigid rotator 35
1.7.3. Transition to quantum mechanics 35
1.7.4. Dynamics of the rigid rotator 36
1.8. Quantization on a Sphere 38
1.8.1. Comparison of classical and quantum probability densities 38
1.8.2. Special topic: Curvilinear coordinates 41
1.9. Free Schrödinger Equation in Spherical Coordinates 44
1.9.1. Solutions of the radial equation 44
1.9.2. Special Topic: Properties of the Riccati-Bessel functions 45
1.9.3. Special Topic: Expanding the plane wave 46
1.9.4. Special topic: Spherical harmonics and the Fourier transformation 48
1.10. Spherically Symmetric Potentials 50
1.10.1. The structure of the eigenvalue spectrum 50
1.10.2. The vibrating rotator: A model of a diatomic molecule 53
Chapter 2. Coulomb Problem 57
2.1. Introduction 58
2.1.1. Classical models of atoms 58
2.1.2. Transitions between eigenstates 59
2.2. The Classical Coulomb Problem 61
2.2.1. The Coulomb force 61
2.2.2. Classical motion 63
2.3. Algebraic Solution Using the Runge-Lenz Vector 66
2.3.1. The Coulomb problem in quantum mechanics 66
2.3.2. The Runge-Lenz vector in quantum mechanics 67
2.3.3. The eigenvalues of $H$ 68
2.4. Algebraic Solution of the Radial Schrödinger Equation 70
2.4.1. Factorization of the radial Coulomb problem 70
2.4.2. The ground state of the radial Schrödinger operator 72
2.4.3. Excited states of the radial Schrödinger operator 73
2.4.4. Quantum numbers of the Coulomb problem 76
2.4.5. Time evolution of simple superpositions 82
2.5. Direct Solution of the Radial Schrödinger Equation 84
2.5.1. Solution of the Coulomb problem in two dimensions 84
2.5.2. Solution of the Coulomb problem in three dimensions 88
2.6. Special Topic: Parabolic Coordinates 91
2.7. Physical Units and Dilations 96
2.7.1. The Coulomb problem in physical units 96
2.7.2. Scaling transformations 99
2.7.3. Energies and eigenfunctions in physical units 101
2.7.4. The generator of dilations and the virial theorem 103
2.8. Special Topic: Dynamics of Rydberg States 105
Chapter 3. Particles with Spin 113
3.1. Introduction 113
3.2. Classical Theory of the Magnetic Moment 115
3.2.1. Magnetic moment of an extended particle 115
3.2.2. The influence of an external magnetic field on a magnetic moment 116
3.3. The Stern-Gerlach Experiment 118
3.4. The Spin Operators 123
3.4.1. Magnetic moment and spin 123
3.4.2. The $g$-factor 123
3.4.3. Electron in a constant magnetic field 125
3.4.4. Properties of the spin operator 126
3.5. Spinor-Wave Functions 127
3.5.1. A Hilbert space for a spin 1/2 particle 127
3.5.2. Spin operators in the standard representation 129
3.5.3. Changing representations 130
3.5.4. Interpretation of spinor-wave functions 131
3.5.5. Visualization of spinor-wave functions 132
3.5.5.1. Visualization by vectors 132
3.5.5.2. Vizualization by colors 134
3.6. The Pauli Equation 134
3.6.1. The Pauli operator 134
3.6.2. Magnetic fields with constant direction 136
3.6.3. Supersymmetric structure 137
3.7. Solution in a Homogeneous Magnetic Field 138
3.7.1. The $g$-factor of orbital motion 138
3.7.2. Solutions with zero energy 138
3.7.3. The spectrum of eigenvalues 141
3.8. Special Topic: Magnetic Ground States 142
3.8.1. Two dimensions 143
3.8.2. Three dimensions 145
3.9. The Coulomb Problem with Spin 146
3.9.1. Coulomb-Hamiltonian for a particle with spin 146
3.9.2. Complete set of observables 147
3.9.3. The spin-orbit interaction 148
3.9.4. Eigenfunctions of the spin-orbit operator 150
3.9.5. The radial equation 155
Chapter 4. Qubits 157
4.1. States and Observables 158
4.1.1. The Hilbert space of a qubit 158
4.1.2. States of a qubit 159
4.1.3. Qubit observables 160
4.2. Measurement and Preparation 162
4.2.1. Stern-Gerlach experiment 162
4.2.2. Projection postulate 164
4.2.3. Stern-Gerlach filter and state preparation 165
4.3. Ensemble Measurements 167
4.3.1. State verification 167
4.3.2. Determining an unknown state 168
4.3.3. Classical teleportation is impossible 170
4.4. Qubit Manipulations 171
4.4.1. All states are "spin-up" in some direction 171
4.4.2. Rotations of a qubit 174
4.4.3. Time evolution of the spin in a magnetic field 176
4.4.4. Special topic: Spinor rotations 177
4.4.5. Transition probabilities between qubit states 179
4.5. Other Qubit Systems 181
4.5.1. Photon polarizations 181
4.5.2. Spatial states of photons 184
4.5.3. Two states of a harmonic oscillator 187
4.6. Single-Particle Interference 189
4.6.1. Interferometer 189
4.6.2. A double-slit experiment 192
4.6.3. A rotation through $2\pi $ 193
4.6.4. Interaction-free measurement 194
4.7. Quantum Cryptography 197
4.7.1. One-time pad 197
4.7.2. Quantum key distribution 198
4.8. Hidden Variables 200
4.8.1. Failure of classical picture 200
4.8.2. Hidden-variable interpretation 201
4.9. Special Topic: Qubit Dynamics 204
4.9.1. Time-dependent Hamiltonian 204
4.9.2. Time dependence generated by unitary operators 205
4.9.3. Magnetic resonance 206
Chapter 5. Composite Systems 211
5.1. States of Two-Particle Systems 212
5.1.1. The Hamiltonian for two free particles 212
5.1.2. The Schrödinger equation of a two-particle system 213
5.1.3. Two-particle Hilbert space 214
5.1.4. The interpretation of two-particle wave functions 215
5.2. Hilbert Space of a Bipartite System 216
5.2.1. Construction of the tensor product 216
5.2.2. Orthonormal basis of the tensor product space 217
5.2.3. Entangled states 218
5.2.4. Example: Two-qubit system 219
5.2.5. Example: Particle with spin 220
5.3. Interacting Particles 221
5.3.1. Two-particle interactions 221
5.3.2. Separation of the center-of-mass motion 222
5.4. Observables of a Bipartite System 223
5.4.1. Tensor product of operators 223
5.4.2. Local manipulations 225
5.5. The Density Operator 227
5.5.1. What does entanglement mean for the subsystems? 227
5.5.2. Expectation values of subsystem observables 229
5.5.3. Trace-class operators 230
5.5.4. Density operator of a subsystem 232
5.6. Pure and Mixed States 233
5.6.1. State of a subsystem 233
5.6.2. Canonical form of the density operator 234
5.6.3. Ensemble interpretation of mixed states 236
5.7. Preparation of Mixed States 238
5.7.1. Preparing an ensemble in a mixed state 238
5.7.2. Ambiguity of realizing mixed states 240
5.7.3. Example: Mixed qubit states 241
5.8. More About Bipartite Systems 244
5.8.1. Normal form of the state vector 244
5.8.2. Maximally entangled states 247
5.8.3. Purification 248
5.8.4. Projection postulate for mixed states 249
5.9. Indistinguishable Particles 250
5.9.1. (Anti-)symmetric states of bipartite systems 250
5.9.2. Example: Bosons and fermions 254
5.9.3. Example: Two-qubit system 255
5.10. Special Topic: Multiparticle Systems with Spin 256
5.11. Special Topic: Addition of Angular Momenta 259
5.11.1. Total angular momentum 259
5.11.2. Eigenvalues of J
3
260
5.11.3. The quantum numbers of the total angular momentum 261
5.11.4. Clebsch-Gordan coefficients 264
5.11.5. Angular momentum plus spin 1/2 266
Chapter 6. Quantum Information Theory 271
6.1. Entangled States of Two-Qubit Systems 272
6.1.1. Bases of entangled states 272
6.1.2. Global aspects of local measurements 273
6.1.3. Determining a Bell state 275
6.1.4. Preparing a Bell state 276
6.2. Local and Nonlocal 278
6.2.1. Nonlocal interaction? 278
6.2.2. Local manipulations 280
6.3. The Einstein-Podolsky-Rosen Paradox 281
6.4. Correlations Arising from Entangled States 285
6.4.1. Joint probabilities in two-qubit systems 285
6.4.2. A protocol for verifying joint probabilities 288
6.5. Bell Inequalities and Local Hidden Variables 290
6.5.1. General setup for measuring correlations 291
6.5.2. Realism and hidden variables 292
6.5.3. Statistical independence 293
6.5.4. Bell's theorem 295
6.5.5. Violation of the Bell inequality 297
6.6. Entanglement-Assisted Communication 300
6.6.1. Dense coding 301
6.6.2. Quantum state teleportation 302
6.7. Quantum Computers 305
6.8. Logic Gates 307
6.8.1. Single-qubit gates: The Hadamard transformation 308
6.8.2. The controlled-not gate 310
6.8.3. Sequences of quantum logic gates 313
6.8.4. An impossible gate 315
6.9. Quantum Algorithms 316
6.9.1. Function evaluation 316
6.9.2. Simple quantum algorithms 317
6.9.3. Further applications of quantum computers 320
6.9.3.1. Grover's algorithm 320
6.9.3.2. Simon's algorithm 321
6.9.3.3. Period finding and the quantum Fourier transform 321
6.9.3.4. Shor's algorithm 322
6.9.3.5. Error correction 322
Chapter 7. Relativistic Systems in One Dimension 323
7.1. Introduction 324
7.2. The Free Dirac Equation 325
7.2.1. The relativistic energy-momentum relation 325
7.2.2. The Dirac operator 326
7.3. Dirac Spinors and State Space 327
7.3.1. A Hilbert space for the Dirac equation 327
7.3.2. The standard interpretation 328
7.3.3. The relativistic momentum space 330
7.3.4. A solution of the Dirac equation 331
7.4. Plane Waves and Wave Packets 332
7.4.1. Diagonalization in momentum space 332
7.4.2. Eigenvectors and plane-wave solutions 334
7.4.3. Building wave packets 337
7.5. Subspaces with Positive and Negative Energies 339
7.6. Kinematics of Wave Packets 343
7.6.1. The limiting velocity 343
7.6.2. Negative-energy wave packets 346
7.7. Zitterbewegung 347
7.7.1. The standard position operator 347
7.7.2. Velocity of the standard position 349
7.7.3. The classical velocity operator 350
7.7.4. Time evolution of the standard velocity 351
7.7.5. Time evolution of the standard position 352
7.7.6. Superpositions and Zitterbewegung 353
7.7.7. Superluminal motion? 357
7.8. Special Topic: Energy Representation and Velocity Space 359
7.8.1. Variable substitutions 360
7.8.2. Energy representation 362
7.8.3. Velocity representation 364
7.9. Relativistic Invariance 365
7.9.1. Lorentz transformations 365
7.9.2. Transformation of the Dirac equation 367
7.9.3. Representation of Lorentz boosts 369
7.9.4. Invariance of the free-particle Dirac equation 370
7.9.5. Unitary implementation of Lorentz boosts 371
Chapter 8. The Dirac Equation 377
8.1. The Dirac Equation 378
8.1.1. Free Dirac operator in two and three dimensions 378
8.1.2. Properties of the free-particle Dirac operator 380
8.1.3. Electromagnetic fields 381
8.2. Relativistic Covariance 382
8.2.1. Poincaré transformations 382
8.2.2. Poincaré covariance of the Dirac equation 384
8.2.3. Velocity transformations 386
8.2.4. Rotations 387
8.2.5. Unitary representation 388
8.3. Classification of External Fields 389
8.3.1. Poincaré transformations of external fields 389
8.3.2. Electromagnetic vector potential 390
8.3.3. Scalar potential 391
8.3.4. Anomalous magnetic moment 391
8.4. Positive and Negative Energies 392
8.4.1. Negative-energy wave packets are positrons 392
8.4.2. Relativistic scattering in one dimension: The Klein paradox 395
8.4.3. Physical Hilbert space and relativistic observables 398
8.4.4. Relativistic confinement 399
8.5. Nonrelativistic Limit and Relativistic Corrections 402
8.5.1. The nonrelativistic limit 402
8.5.2. Relativistic corrections 404
8.5.3. Spin-orbit interaction and the Darwin term 407
8.6. Spherical Symmetry 410
8.6.1. Matrix potentials with spherical symmetry 410
8.6.2. Operators that commute with the Dirac operator 411
8.6.3. Angular-momentum eigenfunctions 413
8.6.4. The angular-momentum subspaces 414
8.7. The Dirac-Coulomb Problem 417
8.7.1. The radial Dirac-Coulomb equation 417
8.7.2. A useful similarity transformation 418
8.7.3. The second-order equations 419
8.7.4. Supersymmetry 420
8.7.5. The ground state 422
8.7.6. The first excited state 424
8.7.7. Further eigenfunctions 425
8.8. Relativistic Hydrogen Atom 426
8.8.1. Eigenvalues and eigenfunctions 426
8.8.2. Degeneracy and higher symmetry 428
8.8.3. Angular momentum and spectroscopical notation 428
8.8.4. Fall to the center 430
Appendix A. Synopsis of Quantum Mechanics 433
A.1. The Hilbert Space of Quantum Mechanics 433
A.2. States of a Physical System 434
A.3. Observables 435
A.4. Interpretation Rule 436
A.5. Projections and Properties 436
A.6. Time Evolution 437
A.7. Measurements 439
A.8. Dirac's Formalism 439
Appendix B. Perturbation of Eigenvalues 443
B.1. Introduction 443
B.2. Rayleigh-Schrödinger series 446
B.3. Degenerate eigenvalues 449
B.4. Alkali atoms 451
B.5. Ground state of helium 452
Appendix C. Special Topic: Analytic Perturbation Theory 455
C.1. Relative boundedness 455
C.2. The resolvent 456
C.3. Analytic dependence on the perturbation parameter 458
Appendix D. Variational Method 461
D.1. Critical points of the energy functional 461
D.2. Semibounded Hamiltonians and the minimal energy 462
D.3. The ground state of helium (again) 464
D.4. Finding excited states by variational methods 465
D.5. The minimax principle and the Rayleigh-Ritz technique 466
Appendix E. Adiabatic and Geometric Phases 467
E.1. The adiabatic approximation 467
E.2. The Berry phase 469
E.3. Example: Spin in magnetic field 471
Appendix F. Formal Scattering Theory 475
F.1. Bound states and scattering states 475
F.2. Asymptotic completeness 476
F.3. Wave operators 477
F.4. The scattering operator 479
F.5. Properties of wave and scattering operators 480
F.6. Scattering operator in the energy representation 482
F.7. Stationary Scattering Theory 483
F.8. Scattering amplitude 485
F.9. Scattering cross section 486
Appendix G. Books 491
Appendix H. Movie Index 493
0. Introduction 493
1. Spherical Symmetry 494
2. Coulomb Problem 495
3. Spin 498
4. Qubits 499
5. Composite Systems 500
6. Relativistic Systems 501
List of Symbols 505
Index 511